Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
iScience ; 27(2): 108934, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533453

RESUMO

Pathological consequences of circadian misalignment, such as shift work, show considerable individual differences, but the lack of mechanistic understanding hinders precision prevention to prevent and mitigate disease symptoms. Here, we employed an integrative approach involving physiological, transcriptional, and histological phenotypes to examine inter-individual differences in pre-symptomatic pathological progression, preceding irreversible disease onset, in wild-type mice exposed to chronic jet-lag (CJL). We observed that CJL markedly increased the prevalence of hepatic steatosis with pronounced inter-individual differences. Stratification of individual mice based on CJL-induced hepatic transcriptomic signature, validated by histopathological analysis, pinpoints dysregulation of lipid metabolism. Moreover, the period and power of intrinsic behavioral rhythms were found to significantly correlate with CJL-induced gene signatures. Together, our results suggest circadian rhythm robustness of the animals contributes to inter-individual variations in pathogenesis of circadian misalignment-induced diseases and raise the possibility that these physiological indicators may be available for predictive hallmarks of circadian rhythm disorders.

2.
Headache ; 64(2): 195-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288634

RESUMO

OBJECTIVE: To characterize the circadian features of the trigeminal ganglion in a mouse model of headache. BACKGROUND: Several headache disorders, such as migraine and cluster headache, are known to exhibit distinct circadian rhythms of attacks. The circadian basis for these rhythmic pain responses, however, remains poorly understood. METHODS: We examined trigeminal ganglion ex vivo and single-cell cultures from Per2::LucSV reporter mice and performed immunohistochemistry. Circadian behavior and transcriptomics were investigated using a novel combination of trigeminovascular and circadian models: a nitroglycerin mouse headache model with mechanical thresholds measured every 6 h, and trigeminal ganglion RNA sequencing measured every 4 h for 24 h. Finally, we performed pharmacogenomic analysis of gene targets for migraine, cluster headache, and trigeminal neuralgia treatments as well as trigeminal ganglion neuropeptides; this information was cross-referenced with our cycling genes from RNA sequencing data to identify potential targets for chronotherapy. RESULTS: The trigeminal ganglion demonstrates strong circadian rhythms in both ex vivo and single-cell cultures, with core circadian proteins found in both neuronal and non-neuronal cells. Using our novel behavioral model, we showed that nitroglycerin-treated mice display circadian rhythms of pain sensitivity which were abolished in arrhythmic Per1/2 double knockout mice. Furthermore, RNA-sequencing analysis of the trigeminal ganglion revealed 466 genes that displayed circadian oscillations in the control group, including core clock genes and clock-regulated pain neurotransmitters. In the nitroglycerin group, we observed a profound circadian reprogramming of gene expression, as 331 of circadian genes in the control group lost rhythm and another 584 genes gained rhythm. Finally, pharmacogenetics analysis identified 10 genes in our trigeminal ganglion circadian transcriptome that encode target proteins of current medications used to treat migraine, cluster headache, or trigeminal neuralgia. CONCLUSION: Our study unveiled robust circadian rhythms in the trigeminal ganglion at the behavioral, transcriptomic, and pharmacogenetic levels. These results support a fundamental role of the clock in pain pathophysiology. PLAIN LANGUAGE SUMMARY: Several headache diseases, such as migraine and cluster headache, have headaches that occur at the same time each day. We learned that the trigeminal ganglion, an important pain structure in several headache diseases, has a 24-hour cycle that might be related to this daily cycle of headaches. Our genetic analysis suggests that some medications may be more effective in treating migraine and cluster headache when taken at specific times of the day.


Assuntos
Cefaleia Histamínica , Transtornos de Enxaqueca , Neuralgia do Trigêmeo , Camundongos , Animais , Gânglio Trigeminal , Transcriptoma , Neuralgia do Trigêmeo/genética , Nitroglicerina , Cefaleia , Perfilação da Expressão Gênica , Dor , Ritmo Circadiano/genética , Camundongos Knockout
3.
Curr Opin Genet Dev ; 84: 102152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266394

RESUMO

The circadian clocks are cell-autonomous intrinsic oscillators existing throughout the body to coordinate intracellular and intercellular functions of each organ or tissue. The circadian clock oscillation gradually emerges during mid-to-late gestation in the mammalian developmental process. Recently, it has been revealed that the in vitro differentiation of mouse ES cells recapitulates the circadian clock development. Moreover, reprogramming of the cells results in the redisappearance of the clock, indicating that circadian clocks are tightly coupled with cellular differentiation. Interestingly, before the circadian clock develops, the embryo is governed under ultradian rhythms driven by the segmentation clock. This short review explores these observations, discussing the significance of the emergence of circadian clock oscillation during the mammalian developmental process.


Assuntos
Relógios Circadianos , Animais , Camundongos , Gravidez , Feminino , Relógios Circadianos/genética , Ritmo Circadiano/genética , Diferenciação Celular/genética , Embrião de Mamíferos , Mamíferos/genética
4.
Neurology ; 100(22): e2224-e2236, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-36990725

RESUMO

BACKGROUND AND OBJECTIVES: Cluster headache and migraine have circadian features at multiple levels (cellular, systems, and behavioral). A thorough understanding of their circadian features informs their pathophysiologies. METHODS: A librarian created search criteria in MEDLINE Ovid, Embase, PsycINFO, Web of Science, and Cochrane Library. Two physicians independently performed the remainder of the systematic review/meta-analysis using Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Separate from the systematic review/meta-analysis, we performed a genetic analysis for genes with a circadian pattern of expression (clock-controlled genes or CCGs) by cross-referencing genome-wide association studies (GWASs) of headache, a nonhuman primate study of CCGs in a variety of tissues, and recent reviews of brain areas relevant in headache disorders. Altogether, this allowed us to catalog circadian features at the behavioral level (circadian timing, time of day, time of year, and chronotype), systems level (relevant brain areas where CCGs are active, melatonin and corticosteroid levels), and cellular level (core circadian genes and CCGs). RESULTS: For the systematic review and meta-analysis, 1,513 studies were found, and 72 met the inclusion criteria; for the genetic analysis, we found 16 GWASs, 1 nonhuman primate study, and 16 imaging reviews. For cluster headache behavior, meta-analyses showed a circadian pattern of attacks in 70.5% (3,490/4,953) of participants across 16 studies, with a clear circadian peak between 21:00 and 03:00 and circannual peaks in spring and autumn. Chronotype was highly variable across studies. At the systems level, lower melatonin and higher cortisol levels were reported in cluster headache participants. At the cellular level, cluster headache was associated with core circadian genes CLOCK and REV-ERBα, and 5 of the 9 cluster headache susceptibility genes were CCGs. For migraine behavior, meta-analyses showed a circadian pattern of attacks in 50.1% (2,698/5,385) of participants across 8 studies, with a clear circadian trough between 23:00 and 07:00 and a broad circannual peak between April and October. Chronotype was highly variable across studies. At the systems level, urinary melatonin levels were lower in participants with migraine and even lower during an attack. At the cellular level, migraine was associated with core circadian genes CK1δ and RORα, and 110 of the 168 migraine susceptibility genes were CCGs. DISCUSSION: Cluster headache and migraine are highly circadian at multiple levels, reinforcing the importance of the hypothalamus. This review provides a pathophysiologic foundation for circadian-targeted research into these disorders. TRIAL REGISTRATION INFORMATION: The study was registered with PROSPERO (registration number CRD42021234238).


Assuntos
Cefaleia Histamínica , Melatonina , Transtornos de Enxaqueca , Animais , Cefaleia Histamínica/genética , Melatonina/metabolismo , Estudo de Associação Genômica Ampla , Transtornos de Enxaqueca/genética , Primatas/metabolismo
5.
Mol Nutr Food Res ; 67(9): e2200270, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829302

RESUMO

SCOPE: Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS: Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION: This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.


Assuntos
Relógios Circadianos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Flavonoides/farmacologia , Fígado/metabolismo , Ritmo Circadiano , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo
6.
J Sleep Res ; 32(2): e13661, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35672255

RESUMO

A high prevalence of excessive daytime sleepiness and poor sleep quality has been reported in adolescents, but the effects of social jetlag on sleep quality and daytime sleepiness are unclear. Therefore, we assessed the association of sleep and eating patterns with daytime sleepiness and sleep quality among a total of 756 Japanese high school students. Participants completed the Pittsburgh Sleep Quality Index to evaluate sleep quality, the Pediatric Daytime Sleepiness Scale to evaluate daytime sleepiness, and an 8-day sleep diary. Data on average sleep duration, social jetlag, midsleep on free days sleep corrected, and the differences in the first and last meal timing between school days and non-school days were obtained from participants' sleep diaries. The results reveal that social jetlag is associated with differences in the first meal timing between school days and non-school days, and that social jetlag of more than 2 hr is associated with extremely poor sleep quality and excessive daytime sleepiness in Japanese high school students. Our findings suggest that reducing social jetlag to within a 2-hr window is important to prevent poor sleep quality and excessive daytime sleepiness for this population.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Distúrbios do Início e da Manutenção do Sono , Qualidade do Sono , Adolescente , Humanos , Ritmo Circadiano , População do Leste Asiático , Síndrome do Jet Lag , Estudantes
7.
Invest Ophthalmol Vis Sci ; 63(5): 16, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35579906

RESUMO

Purpose: To investigate circadian clock oscillation and circadian global gene expression in cultured human corneal endothelial cells (cHCECs) to elucidate and assess the potential function of circadian regulation in HCECs. Methods: In this study, we introduced a circadian bioluminescence reporter, Bmal1:luciferase (Bmal1:luc), into cHCECs and subsequently monitored real-time bioluminescence rhythms. RNA-sequencing data analysis was then performed using sequential time-course samples of the cHCECs to obtain a comprehensive understanding of the circadian gene expression rhythms. The potential relevance of rhythmically expressed genes was then assessed by systematic approaches using functional clustering and individual gene annotations. Results: Bmal1:luc bioluminescence exhibited clear circadian oscillation in the cHCECs. The core clock genes and clock-related genes showed high-amplitude robust circadian messenger RNA (mRNA) expression rhythms in cHCECs after treatment with dexamethasone, and 329 genes that exhibited circadian mRNA expression rhythms were identified (i.e., genes involved in various physiological processes including glycolysis, mitochondrial function, antioxidative systems, hypoxic responses, apoptosis, and extracellular matrix regulation, which represent the physiological functions of HCECs). Conclusions: Our findings revealed that cHCECs have a robust and functional circadian clock, and our discovery that a large number of genes exhibit circadian mRNA expression rhythms in cHCECs suggests a potential contribution of circadian regulation to fine-tune HCEC functions for daily changes in the environment.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células Endoteliais/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
FASEB J ; 36(3): e22186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120261

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease-modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock-enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB-containing diets. NOB significantly alleviated ß-amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel-running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock-controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time-dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis-associated neuroinflammation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Flavonas/farmacologia , Gliose/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Flavonas/uso terapêutico , Gliose/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Fármacos Neuroprotetores/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930826

RESUMO

In mammals, circadian clocks are strictly suppressed during early embryonic stages, as well as in pluripotent stem cells, by the lack of CLOCK/BMAL1-mediated circadian feedback loops. During ontogenesis, the innate circadian clocks emerge gradually at a late developmental stage, and with these, the circadian temporal order is invested in each cell level throughout a body. Meanwhile, in the early developmental stage, a segmented body plan is essential for an intact developmental process, and somitogenesis is controlled by another cell-autonomous oscillator, the segmentation clock, in the posterior presomitic mesoderm (PSM). In the present study, focusing upon the interaction between circadian key components and the segmentation clock, we investigated the effect of the CLOCK/BMAL1 on the segmentation clock Hes7 oscillation, revealing that the expression of functional CLOCK/BMAL1 severely interferes with the ultradian rhythm of segmentation clock in induced PSM and gastruloids. RNA sequencing analysis implied that the premature expression of CLOCK/BMAL1 affects the Hes7 transcription and its regulatory pathways. These results suggest that the suppression of CLOCK/BMAL1-mediated transcriptional regulation during the somitogenesis may be inevitable for intact mammalian development.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Embrião de Mamíferos/metabolismo , Organoides/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Redes Reguladoras de Genes , Mesoderma/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Somitos/crescimento & desenvolvimento , Somitos/metabolismo
10.
J Oral Biosci ; 63(3): 265-270, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358700

RESUMO

OBJECTIVES: Irreversible morphological regressions of the teeth or related structures in older people can diminish their overall health. However, research on human aging in dentistry is complicated by several confounding factors. In this study, we conducted a morphometric analysis of the mandibular second molars and surrounding alveolar bone in C57BL/6 mice to evaluate age-related changes in the oral cavity. METHODS: The animals were divided into five groups based on their age: 4 weeks (juvenile mice; n = 5); 20 weeks (n = 7), 50 weeks (n = 5), 77 weeks (n = 7), and 100 weeks (n = 5); changes were evaluated using micro-computed tomography. RESULTS: The molars of juvenile mice had sharp and pointed cusps and presented maximum heights. With age and occlusal wear, the cusp heights demonstrated a significant decrease (up to 75%) until the last stage of life. Conversely, apparent lesions were not observed on the basal portion of the crown, even in the most heavily worn teeth. The roots of the molars continued to grow in length at 4 weeks of age. Alveolar bone resorption begins to occur in middle age and continues throughout life. The proportion of vertical bone loss reached approximately 40% of the entire root length, demonstrating a remarkable increase between weeks 77 and 100. CONCLUSIONS: Overall, these morphological changes were similar to those observed in humans. Therefore, it might be appropriate to use aged mice as an experimental model for basic and clinical research in geriatric dentistry.


Assuntos
Perda do Osso Alveolar , Atrito Dentário , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/diagnóstico por imagem , Microtomografia por Raio-X
11.
Exp Dermatol ; 30(5): 739-744, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629775

RESUMO

Environmental light levels can affect physiological functions, such as general activity, body temperature and metabolism. Irregular lifestyles, such as those involving exposure to light during the night, can exacerbate the clinical symptoms of several inflammatory skin diseases. However, the effects of constant light exposure on immune responses are not fully understood. This study aimed to elucidate the effects of constant light exposure on two major types of skin reactions, allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). BALB/c mice were kept under constant light conditions or a normal light and dark cycle, and their ACD and ICD responses were assessed after the topical application of 2,4,6-trinitro-1-chlorobenzene and croton oil, respectively, to the ear skin. Interestingly, in both ACD and ICD, the ear-swelling response and local leukocyte infiltration were aggravated by constant exposure to light, which has previously been shown to severely disturb the behavioural rhythms of mice. In ACD, these findings were accompanied by increases in the numbers of degranulated mast cells and eosinophils. These results suggest that constant light exposure intensifies allergic and non-allergic skin inflammation.


Assuntos
Alérgenos/imunologia , Dermatite Irritante/metabolismo , Irritantes/farmacologia , Luz Solar , Animais , Dermatite Alérgica de Contato/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
12.
Sci Rep ; 10(1): 13844, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796949

RESUMO

Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Gânglios Espinais/fisiologia , Neuralgia/etiologia , Neuralgia/fisiopatologia , Paclitaxel/efeitos adversos , Fatores de Transcrição ARNTL , Animais , Ritmo Circadiano/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Técnicas In Vitro , Camundongos , Proteínas Circadianas Period , Traumatismos dos Nervos Periféricos , Ratos , Corno Dorsal da Medula Espinal/fisiologia
13.
Int J Urol ; 27(6): 518-524, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32223039

RESUMO

The circadian clock controls and adapts diverse physiological and behavioral processes according to Earth's 24-h cycle of environmental changes. The master pacemaker of the mammalian circadian clock resides in the hypothalamic suprachiasmatic nucleus, but almost all cells throughout the body show circadian oscillations in gene expression patterns and associated functions. Recent studies have shown that the circadian clock gradually develops during embryogenesis. Embryonic stem cells and induced pluripotent stem cells do not show circadian oscillations of gene expression, but gradually develop circadian clock oscillation during differentiation; thus, the developmental program of circadian clock emergence appears closely associated with cellular differentiation. Like embryonic stem cells, certain cancer cell types also lack the circadian clock. Given this similarity between embryonic stem cells and cancer cells, interest is growing in the contributions of circadian clock dysfunction to dedifferentiation and cancer development. In this review, we summarize recent advances in our understanding of circadian clock emergence during ontogenesis, and discuss possible associations with cellular differentiation and carcinogenesis. Considering the multiple physiological functions of circadian rhythms, circadian abnormalities might contribute to a host of diseases, including cancer. Insights on circadian function could lead to the identification of biomarkers for cancer diagnosis and prognosis, as well as novel targets for treatment.


Assuntos
Relógios Circadianos , Neoplasias , Animais , Diferenciação Celular , Ritmo Circadiano , Expressão Gênica , Neoplasias/genética
14.
Sci Rep ; 10(1): 2569, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054990

RESUMO

Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1+CD44high CD4 T cells as well as CD95+GL7+ germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders.


Assuntos
Senescência Celular/imunologia , Ritmo Circadiano/imunologia , Síndrome do Jet Lag/imunologia , Longevidade/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Senescência Celular/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Inflamação/imunologia , Inflamação/fisiopatologia , Síndrome do Jet Lag/fisiopatologia , Longevidade/genética , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Análise de Sequência de RNA , Linfócitos T/imunologia , Linfócitos T/patologia
15.
J Mol Biol ; 432(12): 3611-3617, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31931007

RESUMO

The emergence of circadian molecular oscillation is observed as a gradual process during the development in mammals. Pluripotent stem cell differentiation cultures recapitulate this process, whereas reprogramming into an undifferentiated state reverses it. These findings indicate that the circadian clock is tightly coupled to the state of cellular differentiation. The state of the circadian core machinery in nonrhythmic cells may be different from that in rhythmic cells. In this review, we describe the circadian rhythm development during ontogeny in mammals and focus on the molecular mechanisms that suppress circadian molecular oscillations during early development and in pluripotent stem cells. We also discuss the biological implications of repressing cellular circadian oscillation in nonrhythmic cells.


Assuntos
Diferenciação Celular/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células-Tronco Pluripotentes/citologia , Animais , Humanos , Mamíferos/genética
16.
Pediatr Surg Int ; 35(12): 1403-1411, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555858

RESUMO

PURPOSE: We investigated how local tumor resection affects metastatic lesions in neuroblastoma. METHODS: MYCN Tg tumor-derived cells were injected subcutaneously into 129+Ter/SvJcl wild-type mice. First, the frequency of metastasis-bearing mice was investigated immunohistochemically (metastatic ratio) at endpoint or post-injection day (PID) 90. Second, the threshold volume of local tumor in mice bearing microscopic lymph node metastasis (mLNM) was investigated at PID 30. Finally, local tumors were resected after exceeding the threshold. Mice were divided into local tumor resection (Resection) and observation (Observation) groups, and the metastatic ratio and volume of LNM were compared between the groups at endpoint or PID 74. RESULTS: The metastatic ratio without local resection was 88% at PID 78-90. The threshold local tumor volume in the mice with mLNM was 745 mm3 at PID 30, so local tumors were resected after exceeding 700 mm3. The metastatic ratio and LNM volume were significantly greater in the Resection group (n = 16) than in the Observation group (n = 16) (94% vs. 38%, p < 0.001; 2092 ± 2310 vs. 275 ± 218 mm3, p < 0.01; respectively) at PID 50-74. CONCLUSION: Local tumor resection might augment the growth of synchronous microscopic metastases. Our results provide insights into the appropriate timing of local resection for high-risk neuroblastoma.


Assuntos
Neoplasias da Medula Óssea/secundário , Neoplasias Pulmonares/secundário , Metástase Linfática , Segunda Neoplasia Primária/patologia , Neuroblastoma/patologia , Neuroblastoma/cirurgia , Neoplasias Ovarianas/secundário , Aloenxertos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
17.
J Biol Rhythms ; 34(5): 525-532, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31368392

RESUMO

The mammalian circadian clock, which coordinates various physiological functions, develops gradually during ontogeny. Recently, we have reported the posttranscriptional suppression of CLOCK protein expression as a key mechanism of the emergence of the circadian clock during mouse development. However, whether a common mechanism regulates the development of the human circadian clock remains unclear. In the present study, we show that human induced pluripotent stem cells (iPSCs) have no discernible circadian molecular oscillation. In addition, in vitro differentiation culture of human iPSCs required a longer duration than that required in mouse for the emergence of circadian oscillations. The expression of CLOCK protein in undifferentiated human iPSCs was posttranscriptionally suppressed despite the expression of CLOCK mRNA, which is consistent with our previous observations in mouse embryonic stem cells, iPSCs, and early mouse embryos. These results suggest that CLOCK protein expressions could be posttranscriptionally suppressed in the early developmental stage not only in mice but also in humans.


Assuntos
Proteínas CLOCK/genética , Diferenciação Celular , Relógios Circadianos/genética , Ritmo Circadiano , Células-Tronco Pluripotentes Induzidas/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas CLOCK/fisiologia , Células Cultivadas , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética
18.
Sci Rep ; 9(1): 10171, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308426

RESUMO

The circadian clock regulates behavioural and physiological processes in a 24-h cycle. The nuclear receptors REV-ERBα and REV-ERBß are involved in the cell-autonomous circadian transcriptional/translational feedback loops as transcriptional repressors. A number of studies have also demonstrated a pivotal role of REV-ERBs in regulation of metabolic, neuronal, and inflammatory functions including bile acid metabolism, lipid metabolism, and production of inflammatory cytokines. Given the multifunctional role of REV-ERBs, it is important to elucidate the mechanism through which REV-ERBs exert their functions. To this end, we established a Rev-erbα/Rev-erbß double-knockout mouse embryonic stem (ES) cell model and analyzed the circadian clock and clock-controlled output gene expressions. A comprehensive mRNA-seq analysis revealed that the double knockout of both Rev-erbα and Rev-erbß does not abrogate expression rhythms of E-box-regulated core clock genes but drastically changes a diverse set of other rhythmically-expressed output genes. Of note, REV-ERBα/ß deficiency does not compromise circadian expression rhythms of PER2, while REV-ERB target genes, Bmal1 and Npas2, are significantly upregulated. This study highlight the relevance of REV-ERBs as pivotal output mediators of the mammalian circadian clock.


Assuntos
Relógios Circadianos/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Células-Tronco Embrionárias/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Mamíferos/genética , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
19.
Nat Commun ; 10(1): 2563, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189882

RESUMO

Non-coding cis-regulatory elements are essential determinants of development, but their exact impacts on behavior and physiology in adults remain elusive. Cis-element-based transcriptional regulation is believed to be crucial for generating circadian rhythms in behavior and physiology. However, genetic evidence supporting this model is based on mutations in the protein-coding sequences of clock genes. Here, we report generation of mutant mice carrying a mutation only at the E'-box cis-element in the promoter region of the core clock gene Per2. The Per2 E'-box mutation abolishes sustainable molecular clock oscillations and renders circadian locomotor activity and body temperature rhythms unstable. Without the E'-box, Per2 messenger RNA and protein expression remain at mid-to-high levels. Our work delineates the Per2 E'-box as a critical nodal element for keeping sustainable cell-autonomous circadian oscillation and reveals the extent of the impact of the non-coding cis-element in daily maintenance of animal locomotor activity and body temperature rhythmicity.


Assuntos
Ritmo Circadiano/genética , Elementos E-Box/genética , Proteínas Circadianas Period/genética , Regiões Promotoras Genéticas/genética , Animais , Comportamento Animal/fisiologia , Temperatura Corporal/fisiologia , Células Cultivadas , Fibroblastos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Cultura Primária de Células , RNA Mensageiro/metabolismo
20.
Sci Adv ; 5(1): eaau9060, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746467

RESUMO

Compounds targeting the circadian clock have been identified as potential treatments for clock-related diseases, including cancer. Our cell-based phenotypic screen revealed uncharacterized clock-modulating compounds. Through affinity-based target deconvolution, we identified GO289, which strongly lengthened circadian period, as a potent and selective inhibitor of CK2. Phosphoproteomics identified multiple phosphorylation sites inhibited by GO289 on clock proteins, including PER2 S693. Furthermore, GO289 exhibited cell type-dependent inhibition of cancer cell growth that correlated with cellular clock function. The x-ray crystal structure of the CK2α-GO289 complex revealed critical interactions between GO289 and CK2-specific residues and no direct interaction of GO289 with the hinge region that is highly conserved among kinases. The discovery of GO289 provides a direct link between the circadian clock and cancer regulation and reveals unique design principles underlying kinase selectivity.


Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Renais/metabolismo , Animais , Proteínas CLOCK/metabolismo , Carcinoma de Células Renais/patologia , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Humanos , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...